pss 2012

​Invited feature article in physica status solidi


Contact Engineering for Nano-scale CMOS by Prof. Hussain, Hossain Fahad and Ramy Qaisi will be published as invited feature article in physica status solidi (Wiley-VCH)

High performance computation with longer battery life time is an essential component in our today’s digital electronics oriented life. To achieve these goals field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective.